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Successive, simplified equations of shells can be obtained by asymptotic splitting 
of the starting system [1-4]. They enable the solution of a wide class of practically 
important problems; however, for different approximate relations must be used for varia- 
bilities of the stressed state. As shown in this work, for structurally orthotropic 
cylindrical stringer and ring-framed shells this drawback can be eliminated by the method 
of constitutive equations [5]. Reference [6] is one of the first works in which a similar 
idea was used for isotropic shells. 

I. In [2-4] it is shown that the equations of structurally orthotropic cylindrical 
shells can be further (compared with the isotropic case [i]) simplified. This is linked 
with the presence of an additional small parameter in them - the ratio of the flexural 
rigidities in different directions. Based on an analysis of real structures, in [2] the 
classes of stringer and ribbed shells, in particular, are singled out. For these shells 
the following relations are characteristic: 

- 

where Bi, Di(i = i, 2) are the membrane and flexural rigidities; e i is the distance from 
the center of mass of the collection of sections up to the center surface of the shell; the 
index I corresponds to longitudinal and the index 2 to annular supports; B3, D 3 are the 
shear and torsional rigidities; and, R is the radiusof the shell. 

The main difference between the simplified equations obtained in [2-4] and the iso- 
tropic case consists of the fact that the equations of the theory of tapered shells also 
split into two equations, each of which is of fourth order with respect to the longitudinal 
coordinate. 

We shall examine in detail the case of the static stressed state of a stringer shell 
[2]. For the characteristic of the variability of the potential function ~ along the 
coordinates we introduce the parameters =, ~ with the help of the relations 

where $ = x/R; N = y/R; and, x and y are the longitudinal and circular coordinates. 

For small variability of the stressed-strained state (SSS) in the annular direction 
(~ = 0), we obtain the following equations for the principal state (~ = -43.5) 

and for the simple edge effect (= = 0.5) 

(1.2) 

where ~ is Poisson's ratio. 
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For large variability of the SSS along the ring ($ = 0.5) we have the equations 

= O: {1] + % 0~1--5) @g~g.~ @ e~eaV~@nnn~ ~ := 0; ( 1 . 3 )  

= ( )~'r ~({~} . . . .  ~ ) 0, (1.4) 

where 0 ~ 0 4 0 ~ 0 ~ 0~ 

F i n a l l y ,  when S > 0 .5  t h e  s t a r t i n g  e q u a t i o n  s p l i t s  i n t o  e q u a t i o n s  f o r  b en d in g  and p l a n e  
d e f o r m a t i o n  o f  a s t r i n g e r  p l a t e ,  which  a r e  o b t a i n e d  f rom ( 1 . 3 )  and ( 1 . 4 ) ,  i f  t h e  t e rms  in  
' the b r a c e s  a r e  d r o p p e d  in  them.  

We shall now try to construct the constitutive equations, suitable for any variability 
of the SSR. It is not difficult to see that (1.4) already satisfies this condition, since 
it includes the equation of the edge effect (1.2) and of the plane SSS of the plate. To 
transform the equation (1.3) into a constitutive equation, the operator ~ must be replaced 
]by the following operator: 

04 0 ~ ( 0"~  ~- 
v~o = - ~  + 2% o~,on~ + % ~ + -~-.~ ] .  

Then the equation 

AtO,e4e~V10Onnn, ]-~ I T %  0q~. / @ ~ = 0  ( i . 5 )  

:includes the equation of the principal state (I.i) and bending of the plate. 

The principal, from the energy standpoint, deformations for SSS described by (1.3) are 
the curvatures KI, <2 and the torsion <12, and also the deformation in the longitudinal 
direction e11. For (1.4) the principal deformations are <l, ~11, E~2, el2. 

Using the limiting equation [2] for a ring-framed shell we have the following 
constitutive equations : 

"Oq ~ O~ ~ +  (1.6) 

~ 0~: i= on~ 

- ' 04~' O; 
-- 2v,~ ~p T 0--- i-  

A~------ 812V14o~ + \ O@ / 
Equation (1.7) is the same as the limiting equation presented in [2], and in (1.6) the 

term in the braces has been added. The relation (1.6) includes the equations of the princi- 
pal state, the stressed state with a large index of variability in the annular direction and 
predominantly tangential deformation of the plate, and the relation (1.7) describes the edge 
effect, the stress state with a large index of variability in the longitudinal direction and 
predominantly flexural deformation of the plate. The principal deformations for SSS, des- 
cribed by (1.6) and (1.7), are ell, 822 , el2 , <~ and 822, <i, <2, <12, respectively. 

2. The constitutive equations can also be constructed for the problems of stability 
and dynamics, and the limiting equations for structurally orthotropic stringer and ring- 
framed shells are presented in [3, 4] . 

The constitutive equations of stability for a stringer shell can be represented in the 
form 

02 ( O~ ) (  - O~ - o  4 . o ~ ,  A,O + 84 
o 0~20~1~ ~u On ~ ] 
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TABLE I 

ConditiOns ]General 
fo r  (1.6) or lcondi- 
(2 3) or t 

~, V I/Y 

Ti, v " w 
~ ,  V" W 

Conditions for 
(1.7) or (2.41 

or (2.a)  

w~ 

M~ 
M1 

Conditions 
for (1.6) or 
(2.3) or 
(2.7) 

U 

T, 

T~ 

General 
condi ~ 
tions 

S~ g) 

S , w  

S ,  w 

S, w 

Conditions for 
(1.7) or (2.4) 

or ( 2 : 8 )  

mi 
w~ 
Mg:. 
M~ 

%* + {'7~,o r = o. 

For ring-framed shells we have 

+ + o , + ] j  

( 2 . 2 )  

= 0 ;  ( 2 . 3 )  

A,,+ r~o.~_+2soo__~+r?o_~. r ( 2 . 4 )  

w h e r e  {r~0; S0; ~ d  = iTi0; $0; T~o}/B2; T1o, r~0, S0 a r e  t h e  a x i a l ,  a n n u l a r ,  and  s h e a r  f o r c e s  i n  t h e  
subcritical state. 

Equations (2.1)-(2.3) differ from those presented in [3] by the terms in the braces, 
and Eq. (2.4) is the same as the equation presented in [3]. 

In studying the oscillations of stringer shells the constitutive equations, which hold 
for any frequencies and variabilities, assume the form 

�9 a4 [ ~ , a~ 

e~A,~P -- co20 = O. 

Here ~ is the frequency of the oscillations, and ao=2(871+vi~)/(i--v1~v2i) . 
shells we have 

A~O -- {o~Ailq~} = O; 

A~O--m20= O. 

them, 

+ +] ]} 
(2 .5 )  

( 2 . 6 )  

For ring-framed 

(2.7) 

(2.8) 

In [4] equations which follow from (2.5)-(2.8), if the terms in braces are dropped in 
are presented for the lower part of the spectrum; for high-frequency oscillations 

Al1~ = 0. 

3. In the formulation of the boundary-value problems for the constitutive equations 
constructed, the synthesis of separated boundary conditions is also used. It turns out 
that the boundary conditions for the constitutive equations of stringer shells cannot be 
separated. For ring-framed shells such separation is possible. Let us examine, for example, 
the following variant of the boundary conditions: 

for  ~ = 0, l u =~, w = ~ ,  S = ~, M r =  ~ ,  

w h e r e  ~ = L /R ;  s i s  t h e  l e n g t h  o f  t h e  s h e l l ;  u and  w a r e  l o n g i t u d i n a l  and  n o r m a l  d i s p l a c e -  
m e n t s ;  S i s  t h e  s h e a r  f o r c e ;  M1 i s  t h e  l o n g i t u d i n a l  b e n d i n g  moment ;  ~ ,  w, ~ ,  fl a r e  t h e  
f i x e d  e d g e  v a l u e s  o f  t h e  c o r r e s p o n d i n g  c o m p o n e n t s  o f  t h e  SSSR. 

L e t  u s  e x a m i n e  ( 1 . 6 )  and  ( 1 . 7 ) .  F o r  t h e  p r i n c i p a l  s t a t e ,  c o n d i t i o n s  on u and  S m u s t  
be  g i v e n  [1 ,  7 ] ;  f o r  t h e  e q u a t i o n s  w i t h  t h e  p r e d o m i n a n t  v a r i a b i l i t y  i n  t h e  a n n u l a r  d i r e c -  
t i o n  c o n d i t i o n s  on u and  w m u s t  be  g i v e n  [ 7 ] ;  a n d ,  f o r  a p l a n e  SSS c o n d i t i o n s  on u and  S 
m u s t  be g i v e n .  T h e r e f o r e ,  f o r  t h e  c o n s t i t u t i v e  e q u a t i o n  ( 1 . 6 ) ,  i n c l u d i n g  t h e  i n d i c a t e d  
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relations, boundary conditions on u, S, and w must be given. Analogously, we find that for 
(1.7) it is necessary to state boundary conditions for S, w, and w$. Finally, we find that 
the conditions on S and w must be the same for both equations, the conditions on u revert to 
(1.6), while the condition on wg reverts to (1.7). 

The final results are presented in Table i, where v is the ring displacement, and T I is 
the longitudinal force. 

The procedure described in [8] can be used to solve specific problems. Namely, after 
the solutions of the boundary layer type are constructed they must be eliminated from the 
boundary conditions. As a result there remain the boundary conditions for equations of the 
principal-state type. 

4. To determine the region of applicability of the constitutive equations, we compared 
the squares of the roots of the characteristic equations corresponding to the equations of 
a stringer shell (1.4) and (1.5) with the exact values found numerically. The potential 
function ~ is represented in the form 

�9 = C c x p ( ~ ) c o s ( m , I ) .  

The following values of the geometric-rigidity parameters were used: 

el = 2 , 2 . 1 0 - %  % := 10-% % ~ iO -~, e4 =: 0,6,  

e~ = 0 , 3 ,  e6 = e7 = O, v n = 0 , 2 .  

(4.1) 

The results of the comparison are presented in Figs. i and 2, where the solid lines 
show the real parts of %2 and the broken lines show the imarginary parts. The numbers i 
denote the exact solution; the numbers 2-4 denote the solutions based on (1.4) (Fig. I), 
(i[.5) (Fig. 2), (i.i) (Fig. 2), and (1.2) (Fig. 2); Fig. i is for bending of the plate and 
Fig. 2 is for plane SSS of the plate. 

It is evident that the constitutive equations are indeed applicable for all m and 
realize smooth joining of the solutions valid for small and large variabilities of the SSS. 

We also carried out calculations using the parameter (4.1) (characteristic for a real 
structure), when El varied from 10 -6 to 10 -5 , while s2 varied from 10 -4 to 10 -3 . The 
remaining parameters, as shown in [2-4], do not significantly affect the nature of the 
asymptotic expansions. The error in the constitutive equations in all cases did not 
exceed 5% in the entire range of variation of m. 
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